Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Cell Biochem ; 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2320907

ABSTRACT

Saliva has emerged as a promising noninvasive biofluid for the diagnosis of oral and systemic diseases, including viral infections. During the coronavirus disease 2019 (COVID-19) pandemic, a growing number of studies focused on saliva-based detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Taking advantage of the WoS core collection (WoSCC) and CiteSpace, we retrieved 1021 articles related to saliva-based detection of SARS-CoV-2 and conducted a comprehensive bibliometric analysis. We analyzed countries, institutions, authors, cited authors, and cited journals to summarize their contribution and influence and analyzed keywords to explore research hotspots and trends. From 2020 to 2021, research focused on viral transmission via saliva and verification of saliva as a reliable specimen, whereas from 2021 to the present, the focus of research has switched to saliva-based biosensors for SARS-CoV-2 detection. By far, saliva has been verified as a reliable specimen for SARS-CoV-2 detection, although a standardized procedure for saliva sampling and processing is needed. Studies on saliva-based detection of SARS-CoV-2 will promote the development of saliva-based diagnostics and biosensors for viral detection. Collectively, our findings could provide valuable information to help scientists perceive the basic knowledge landscapes on saliva-based detection of SARS-CoV-2, the past and current research hotspots, and future opportunities.

2.
Sci Bull (Beijing) ; 66(12): 1194-1204, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1036222

ABSTRACT

A key to tackling the coronavirus disease 2019 (COVID-19) pandemic is to understand how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manages to outsmart host antiviral defense mechanisms. Stress granules (SGs), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. Here, we show that the SARS-CoV-2 nucleocapsid (N) protein, an RNA binding protein essential for viral production, interacted with Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) and disrupted SG assembly, both of which require intrinsically disordered region1 (IDR1) in N protein. The N protein partitioned into SGs through liquid-liquid phase separation with G3BP, and blocked the interaction of G3BP1 with other SG-related proteins. Moreover, the N protein domains important for phase separation with G3BP and SG disassembly were required for SARS-CoV-2 viral production. We propose that N protein-mediated SG disassembly is crucial for SARS-CoV-2 production.

SELECTION OF CITATIONS
SEARCH DETAIL